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Abstract

This work compares several node (and network) criticality measures quanti-
fying to which extend each node is critical with respect to the communication
flow between nodes of the network, and introduces a new measure based on
the Bag-of-Paths (BoP) framework. Network disconnection simulation ex-
periments show that the new BoP measure outperforms all the other tested
measures on a sample of Erdős-Rényi and Albert-Barabási graphs. Further-
more, a faster (but still O(n3)), approximate, BoP criticality relying on the
Sherman-Morrison rank-one update of a matrix is introduced for tackling
larger networks. This approximate measure shows similar performances as
the original, exact, one.

Keywords: Criticality measure, network vulnerability, vital nodes, graph
mining, network science, network data analysis, betweenness centrality.

1. Introduction

The analysis and the modeling of network data has become a popular re-
search topic in the last decade and is now often referred to as link analysis (in
computer science) and network science (in physics). Network data appear
in virtually every field of science and is therefore studied in many different
disciplines, such as social sciences, applied mathematics, physics, computer
science, chemistry, biology, economics, etc. Within this context, one impor-
tant question that is often addressed is the following: Which node seems to
be the most critical, or vital, in the network? The present work introduces
such a new node criticality measure, also called vulnerability, quantifying to
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which extend the deletion of each node hurts the connectivity within the
network in a broad sense, e.g., in terms of communication, proximity, or
movement. Criticality measures are often considered as a subset of central-
ity measures, which are frequently used as a proxy for quantifying criticality.
Interested readers are invited to consult the recent comprehensive review [1].

Indeed, a huge number of centrality measures have been defined in vari-
ous fields, starting from social science (see, e.g., [2, 3, 4, 5, 6, 7] and [8] for a
survey). These quantities assign a score to each node of the graph G which
reflects the extent to which this node is “central” by exploiting the structure
of the graph G, or with respect to the communication flow between nodes.
Centrality measures tend to answer the following questions [9]: What is the
most representative, or central, node within a given graph (closeness cen-
trality)? How critical is a given node with respect to the information flow in
a network (criticality)? Which node is the most peripheral in a social net-
work (eccentricity)? Which node is the most important intermediary in the
network (betweenness centrality)? Centrality scores try to answer to these
questions by proposing measures modeling and quantifying these different,
somewhat vague, properties of the nodes.

Notice that, in general, these centrality measures are computed on undi-
rected graphs, or, when dealing with a directed graph, by ignoring the direc-
tion of edges. They are therefore denoted as “undirectional” [10]. Measures
defined on directed graphs – and therefore directional – are often called
importance or prestige measures. They capture to which extend a node is
“important”, “prominent”, or “prestigious” with respect to the whole di-
rected graph by considering directed edges as representing some kind of
endorsement. However, this kind of measure will not be discussed here.

This manuscript introduces a new, efficient and effective, criticality mea-
sure: the bag-of-paths (BoP) criticality. The quantity relies on the bag-of-
paths framework assigning a Gibbs-Boltzmann distribution on the set of
paths in the network [11, 12, 13]. This framework already allowed to de-
fine new distance measures between nodes interpolating between two well-
known distances, the shortest-path distance and the resistance distance (or
commute-time distance) [11]. In this context, the BoP criticality of a node
measures the impact of the node deletion on the total accessibility between
nodes within the network. More specifically, it is defined as the Kullback-
Leibler divergence between the bag-of-paths probabilities, quantifying rela-
tive accessibilities, computed before and after removal of a node of interest.
The larger this decrease in accessibility, the higher the impact of the node
deletion, and thus the higher its criticality.

The novelty of the approach introduced in this paper can be under-
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stood as follows. Most of the traditional criticality measures are essentially
based on two different paradigms about the communication occurring in
the network: optimal communication based on shortest paths and random
communication based on a random walk on the graph. For instance, the
Wiener index (described later in this paper) is based on shortest paths and
the Kirchhoff index on random walks. However, both the shortest path and
the random walk have some drawbacks [14]: shortest paths do not integrate
the amount of connectivity between the two nodes whereas random walks
quickly loose the notion of proximity to the initial node when the graph
becomes larger [15, 16].

Contrary to traditional measures, our criticality measure integrates both
proximity and amount of connectivity in the bag-of-paths framework [11].
Nodes that are both close and highly connected are qualified as highly ac-
cessible. Our introduced bag-of-paths measures aim to quantify the accessi-
bility between the nodes. When the temperature of the model is low (close
to zero), communication occurs through a random walk, while for large tem-
peratures, short paths are promoted.

The introduced measure is compared experimentally to already devel-
oped criticality measures as well as a sample of popular centrality measures,
briefly reviewed in this paper. All those measures are compared through a
Kendall’s correlation analysis and a disconnection methodology [17, 18] in
Section 5. This empirical analysis is performed on a large number, and two
types, of randomly generated graphs (see Subsection 5.1).

In summary, this work has the following main contributions,

• A new criticality measure, showing good performance in the identifi-
cation of the most critical nodes of a network, is introduced.

• All methods are compared experimentally using two disconnection
strategies on a large number of randomly generated graphs.

Finally, the paper is organized as follows: First, the underlying back-
ground and various notations are discussed in Section 2, then Section 3
introduces ten centrality and criticality measures (some being quite well-
known). The bag-of-paths (BoP) model described in [11] is summarized
and the new BoP criticality measure is derived in Section 4. Finally, those
measures are assessed and compared in Section 5.

2. Background and Notation

This section aims to introduce the necessary background and notation
used in this paper. Consider a weighted undirected graph or network, G =

3



{V, E}, strongly connected with a set of n nodes V (or vertices) and a set
of edges E (or arcs, links). The n × n symmetric adjacency matrix of the
graph, containing non-negative affinities between nodes, is denoted as A,
with elements [A]ij = aij ≥ 0.

AT will refer to the transpose of A, A(−j) is a (n− 1)× (n− 1) matrix
obtained from A by removing its jth row and its jth column, e is a column
vector full of ones and ej is the jth column vector of the identity matrix I.
Except explicitly stated, all lower-case bold letters represent column vectors
while upper-case bold letters are matrices.

Moreover, to each edge between node i and j is associated a non-negative
number cij ≥ 0. This number represents the immediate cost of transition
from node i to j. If there is no link between i and j, the cost is assumed
to take a large value, denoted by cij = ∞. The cost matrix C is an n × n
matrix containing the cij as elements. Costs are usually set independently
of the adjacency matrix: they are quantifying the cost of a transition ac-
cording to the problem at hand. For example, costs can be set in function
of some properties, or features, of the nodes (or the edges) in order to bias
the probability distribution of choosing a path to follow. In the case of a
social network, we may, for instance, want to bias the paths in function of
the education level of the persons, therefore favoring paths visiting highly
educated persons. Now, if there is no reason to introduce a cost, we can
simply set cij = 1 (paths are penalized by their length) or cij = 1/aij (in
this case, aij is viewed as a conductance and cij as a resistance) – this last
setting will be used in the experimental section.

We also introduce the Laplacian matrix L of the graph, defined in the
usual manner and needed below,

L = D−A (1)

where D = Diag(Ae) is the diagonal (out)degree matrix of the graph G
containing the ai• on its diagonal. One interesting property of L is that
its eigenvalues provide important information about the connectivity of the
graph [19].

One of the most interesting accessibility measure of the graph G, the
so-called connectivity, is often defined as the minimum number of nodes
that need to be removed to separate it into two disconnected sub-graphs
[20, 21]. Unfortunately, this quantity is hard to compute and cannot be
easily exploited in practice for this reason. Beside this, it can be shown that
the number of zero eigenvalues of L is equal to the number of disconnected
subgraphs, or connected components, of G [19]. Then, for a connected graph
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the smallest eigenvalue of L is called the algebraic connectivity or spectral
gap and has been shown to be a good indicator of its overall “connectedness”
(G is disconnected when its algebraic connectivity is equal to zero). Finally,
the Moore-Penrose pseudoinverse of L is denoted as L+, and contains el-
ements l+ij . Due to the properties of the Moore-Penrose pseudoinverse, its
largest eigenvalue is the algebraic connectivity.

In addition, a natural random walk on G is defined in the standard way.
In node i, the random walker chooses the next edge to follow according to
reference transition probabilities

prefij =
aij∑n

j′=1aij′
(2)

The n× n matrix Pref , containing transition probabilities prefij , is stochastic

and is simply equal to Pref = D−1A. Note that this can lead to a division
by zero if a node i is isolated or is a dangling node; we therefore assume that
the graph is strongly connected. Pref represents the probability of jumping
from any node i to node j ∈ Succ(i), the set of successor nodes of i. In other
words, the random walker chooses to follow an edge with a likelihood propor-
tional to the affinity (apart from the sum-to-one normalization), therefore
favoring edges with a large associated affinity.

A path ℘ (also called a walk) is a sequence of transitions to adjacent
nodes on G (loops are allowed), initiated from a starting node s, and stop-
ping in an ending node e. The total cost of a path ℘, c̃(℘), is defined as the
sum of the individual transition costs cij along ℘.

3. Related Work

In this paper, a large set of criticality measures will be compared experi-
mentally, and briefly reviewed in this section (see [8, 14] for a more thorough
description of these measures). It is convenient to categorize them into three
classes: node betweenness centrality measures, global graph criticality mea-
sures, and node criticality measures.

3.1. Node betweenness centralities

As already mentioned, the concept of criticality is closely related to the
concept of betweenness centrality; we therefore also investigate a few of
the most well-known betweenness and centrality measures. The measure is
defined on each node, identified by its index j.
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• The simple node degree, or edge connection (EC). This quantity is
simply the number of nodes connected to a node j, weighted by edge
weights in the case of a weighted graph. It is obtained by summing
the entries on the jth row of the adjacency matrix A. The idea is that
if a node has a high degree, it is more likely to hurt or disconnect the
graph when removed. It can be computed by

ECj = eTj Ae (3)

• The famous shortest path betweenness (SPB), introduced by Freeman
[2]. It counts the proportion of shortest paths connecting any two
nodes i and k, and passing through an intermediate node j of interest
(with i 6= j 6= k 6= i). The idea is that if a node contributes to a large
number of shortest paths, it can be considered as an important inter-
mediary between nodes when the information is spread “optimally”
along shortest paths. More precisely,

SPBj =
n∑

i=1
i 6=j

n∑
k=1
k 6=i,j

η(j ∈ P∗ik)

|P∗ik|
(4)

where P∗ik is the set of all shortest paths from i to k, |P∗ik| is the total
number of such shortest paths ℘∗ik and η(j ∈ P∗ik) =

∑
℘∗ik∈P

∗
ik
δ(j ∈

℘∗ik) is the total number of such paths visiting node j. We used Bran-
des’ algorithm [22] to compute the SPB of each node of the graph.

• The random walk betweenness (RWB), introduced by Newman [3] and
closely related to Brandes’ electrical centrality [23]. Newman intro-
duced the current flow betweenness centrality, which measures the
centrality of a node as the total sum of electrical currents that flow
through it, when considering all node pairs as source-destination pairs
with a unit current flow. The current flow betweenness is also called
the random walk betweenness centrality because of the well-known con-
nection between electric current flows and random walks [24, 14]. The
idea is thus the same as for the SPB, but taking into account a random
walk-based diffusion of information instead of shortest paths. Notice
that Brandes and Fleischer [23] proposed a more efficient algorithm
computing the random walk betweenness for all nodes of a network.
The properties and computation of the current flow betweenness have
also been discussed by Bozzo and Franceschet [25]. Kivimaki et al.
proposed a new betweenness measure interpolating between the short-
est path betweenness and the random walk betweenness [26].
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• Estrada’s centrality (EST). In [4], Estrada et al. defined a centrality
measure called “subgraph centrality” for a weighted undirected graph
or subgraph. It summarizes simply as

ESTj = eTj

( ∞∑
k=0

Ak

k!

)
ej = eTj diag(expm(A)) (5)

where expm(A) is the matrix exponential of A and diag(X) extract

the main diagonal of X. It is well-known that element a
(k)
ij = [Ak]ij

of matrix Ak (A to the power k) is the weighted number of paths
between node i and node j with exactly k steps (length k). The
subgraph centrality measure therefore integrates a contribution from
all paths connecting node j to himself, discounting paths according
to their number of steps (it favors shorter paths in terms of length).
The intuition is that a node should have a high centrality score if the
closed paths (cycles) starting from it are short and are visiting many
different nodes [4].

3.2. Node criticalities

We now introduce the node criticalities studied in this work. As for the
betweenness, the criticality measure is defined on each node j.

• Wehmuth’s criticality K (WK) is introduced in [5],

WKj =
λ
(j)
2

log2(dj)
(6)

where λ
(j)
2 is the algebraic connectivity of the h-neighbourhood of node

j (the subnetwork composed by all nodes within h hops, or steps, of
node j) and dj is the degree of node j. Recall that the algebraic
connectivity is the second smallest eigenvalue of the Laplacian matrix
L. The idea is to take advantage of the algebraic connectivity property;

the higher the value of λ
(j)
2 , the higher the connectivity/density of the

subnetwork. Then, λ
(j)
2 is divided by the logarithm of the node degree

as locally computed algebraic connectivities show a bias towards higher

values on nodes with high degree. This bias causes λ
(j)
2 to be over-

sensitive to the presence of hubs [5].

• Klein’s edge criticality (KLE). Klein derived the analytical form of
this node criticality measure for several global measures, including the

7



Wiener index and the Kirchhoff index [6]. We will use the measure
based on the Kirchhoff index here ([6]; see also [14]),

KLEj =

n∑
i=1

aij(ei − ej)
T(L+)2(ei − ej) (7)

The intuition behind the measure is the following. Klein’s edge (i, j)
criticality is defined as the sensitivity of the global network criticality
index (here the Kirchhoff index – defined in the next subsection) with
respect to the increase in the resistance of the edge (i, j) [6]. In other
words, it quantifies the impact of an increase in this resistance on the
global network. Edges having a high impact on the global network
criticality hurt most the network and are considered as highly critical.
Then, edge criticality is summed up over incident edges to provide a
node criticality.

3.3. Global network criticalities

The following global criticality indexes are defined on the whole network
G. They quantify the extend to which the network as a whole is efficient,
that is, highly interconnected and cohesive, with high accessibility. For a
communication network, this measure can be, e.g., the “Wiener index” – the
sum of the shortest-path distances (which can be travel time, travel cost,
etc.) between all pairs of nodes. An effective network is characterized by a
low value of the Wiener index as, then, distances between nodes are small
in average.

The impact of a node of interest on the global network accessibility
measure – the derived node criticality – is then quantified by evaluating the
marginal loss in global accessibility when the node of interest is not oper-
ating, i.e., has simply been removed. This measure therefore reports how
critical the node is, relative to the entire graph. To evaluate the criticality
of a particular node j in a fixed graph G, the difference between the global
criticality after deleting this node j, cr(G\ j), and the initial global network
criticality, cr(G), is computed,

crj = cr(G \ j)− cr(G) (8)

and the higher this value, the more critical node j is. Here, G \ j is graph
G whose node j and incident edges have been removed.

This node criticality will be computed on several well-known global crit-
icality measures which are described now. We could also normalize the
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quantity when it corresponds to a sum over all pairs of nodes by something
like cr(G \ i)/((n − 1)(n − 2)) − cr(G)/(n(n − 1)). However, this does not
change the ranking of the nodes as the second term is a constant.

• The Wiener index (WIE) is defined as the sum of the shortest-path
distances between all node pairs (see, e.g., [8]),

WIE(G) =
1

2

n∑
i=1

n∑
j=1

∆
SP
ij (9)

where ∆SP
ij is the shortest-path distance. The underlying idea is that if

the sum of the distances between every node pairs is small, the network
is more likely to be well-connected.

• The Kirchhoff index (KIR) is similar to the Wiener index but uses
the resistance distance (the effective resistance, proportional to the
commute-time distance based on a random walk on the graph) [27],
instead of the shortest path distance, and has been recently used by
Tizghadam and al. in network theory for quantifying the robustness
of a communication network [7]. It can be easily computed by

KIR(G) =
1

2

n∑
i=1

n∑
j=1

∆
ER
ij (10)

where ∆ER
ij is now the effective resistance between i and j, with ∆ER

ii =
0 for each node i. The idea is thus the same as for WIE, but with a
different concept of distance.

• The Kemeny index (KEM) represents the expected number of steps
needed by a random walker for reaching an arbitrary node from some
arbitrary starting node [28], when the starting and ending nodes are
selected according to the equilibrium distribution of the Markov chain.
Indeed, for an irreducible, aperiodic, Markov chain, it is known (see,
e.g., [29]) that the stationary distribution exists and is independent of
the initial state i. More precisely, the Kemeny index is

KEM(G) =
n∑

i=1

πi

n∑
j=1

πjmij =
n∑

j=1

πjmij (11)

where mij is the average first-passage time between node i and node
j and π is the stationary distribution. Equation (11) holds because
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it can be shown that the quantity
∑n

j=1 πjmij is independent of the
starting node i [30]. This index measures the relative accessibility of
all pairs of nodes, putting more weight on the long-term frequently
visited nodes according to the stationary distribution.

• The Shield value (SHV) has recently been introduced [31]:

SHV(G) = λ1 (12)

where λ1 is the dominant eigenvalue of the adjacency matrix A. It is
closely related to the loop capacity and the path capacity of the graph,
that is, the number of loops and paths of finite length. The higher λ1,
the more loops and long path in the graph. As for Estrada’s centrality,
the underlying idea is that if a graph has many such loops and paths
then it is more likely to be well connected. The more the deletion of
a node lowers this value, the less the graph becomes connected, and
therefore the larger its criticality value.

4. The Proposed bag-of-paths Criticality

We now derive a new node criticality measure called the bag-of-paths
criticality (BPC). It is based on computing the effect of a node removal in a
bag-of-paths model (BoP). This framework was recently introduced in [11]
(see also [32] for a related work) for computing distances on graphs, and
used for semi-supervised classification tasks in [11, 12]. In order to make
the paper as self-contained as possible, we briefly review this framework first
in this section. The BoP criticality and its fast approximation are derived
in the next two subsections. Finally, an illustrative example is shown in
Subsection 4.4.

4.1. The bag-of-paths model

The BoP framework is based on the probability of drawing a path i j
starting at a node i and ending in a node j from a virtual bag containing all
possible paths in the network [11]. Let us define Pij as the set of all paths
connecting node i to node j, including loops. We further define the set of
all paths through the network as P =

⋃n
i,j=1 Pij .

The potentially infinite set of paths in the graph is enumerated and a
probability distribution is assigned to the set of individual paths P, consid-
ered independently. This probability distribution on the set P represents
the probability of drawing a path ℘ ∈ P from the bag, and is defined as
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the probability distribution P(·) minimizing the total expected cost along
path ℘, E [c̃(℘)], among all the distributions having a fixed relative entropy
J0 with respect to a reference distribution, for instance the natural ran-
dom walk on the graph (defined by Equation (2)). The quantity c̃(℘) is the
cumulated cost along path ℘.

This choice naturally defines a probability distribution on the set of
paths such that “long” (high cost) paths occur with a low probability while
“short” (low cost) paths occur with a high probability. In other words, we
are seeking path probabilities, P(℘), ℘ ∈ P, minimizing the total expected
cost subject to a constant relative entropy constraint,

{P(℘)}
minimize

∑
℘∈P

P(℘) c̃(℘)

subject to
∑

℘∈P P(℘) ln(P(℘)/Pref(℘)) = J0∑
℘∈P P(℘) = 1

(13)

where Pref(℘) represents the probability of following the path ℘ when walk-
ing according to the natural random walk reference distribution (see Equa-
tion (2)). More precisely, Pref(℘) is proportional to π̃ref(℘), which is the
product of the transition probabilities prefij along the path ℘ – the likelihood
of the path (see [11] for details). Here, J0 > 0 is provided a priori by the
user, according to the desired degree of randomness, or exploration, he is
willing to concede. Note also that, normally, a non-negativity constraint
should be added, but this is not necessary since the resulting probabilities
will automatically be non-negative.

As well-known (see [33, 34] and [11, 32, 35] for maximum entropy distri-
butions over paths), this problem is similar to a standard maximum entropy
one and can be solved by introducing the following Lagrange function inte-
grating equality constraints

L =
∑
℘∈P

P(℘)c̃(℘) + λ

∑
℘∈P

P(℘) ln

(
P(℘)

Pref(℘)

)
− J0

+ µ

∑
℘∈P

P(℘)− 1


and optimizing over the set of path probabilities {P(℘)}℘∈P (partial deriva-
tives set to zero). The Lagrange parameters are then deduced after imposing
the constraints.

The result of the minimization of (13) is a Gibbs-Boltzmann probability
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distribution [11, 32, 35]:

P(℘) =
π̃ref(℘) exp [−θc̃(℘)]∑

℘′∈P
π̃ref(℘′) exp[−θc̃(℘′)]

(14)

where θ = 1/T plays the role of an inverse temperature, exp is the elemen-
twise exponential and π̃(℘) is the likelihood of the path ℘, according to the
natural random walk on G (the reference random walk) defined earlier in
this section.

As expected, short paths ℘ (having a low c̃(℘)) are favoured in that
they have a larger probability of being chosen. Moreover, from Equation
(14), we clearly observe that when θ → 0+, paths probabilities reduce to
the probabilities generated by the natural random walk on the graph. In
this case, J0 → 0 and paths are chosen according to their likelihood in a
natural random walk. On the other hand, when θ is large, the probability
distribution defined by Equation (14) is biased towards short paths (shortest
ones are more likely). Notice that, in the sequel, it will be assumed that the
user provides the value of the parameter θ instead of J0, with θ > 0.

The bag-of-paths probability [11], P(s = i, e = j), is an important quan-
tity defined on the set of (starting, ending) nodes of the paths. It corresponds
to the probability of drawing a path starting in node i and ending in node
j from the virtual bag-of-paths:

P(s = i, e = j) =

∑
℘∈Pij

π̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈P

π̃ref(℘′) exp[−θc̃(℘′)]
(15)

where Pij is the set of paths connecting the starting node i to the ending
node j.

In [11], it is shown that this bag-of-paths probability can be computed
in matrix form by

P(s = i, e = j) =
zij

n∑
i′,j′=1

zi′j′

, with Z = (I−W)−1 (16)

where zij is the element i, j of matrix Z, called the fundamental matrix and

W = Pref ◦ exp[−θC] (17)
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with ◦ being the elementwise (Hadamard) product.
Notice that P(s = i, e = j) is not symmetric. These probabilities quan-

tify the relative accessibility between the nodes and it was shown that minus
their logarithm, − log P(s = i, e = j), defines a useful distance measure be-
tween nodes [11]. By construction this probability is high when the two
nodes i and j are highly connected (there are many terms in the numerator
of Equation (15)) by low-cost paths (each term of the numerator is large).
In other words, it accurately captures the intuitive notion of relative acces-
sibility. These BoP probabilities will serve as a basis for defining the BoP
criticality.

Note that the BoP probabilities can also be used to define some between-
ness measures [26] which are related to well-known centrality/betweenness
measures in some sense: if θ →∞ the betweenness tends to be highly corre-
lated with Freeman’s betweenness [2] (only shortest paths are considered),
while if θ → 0+, the betweenness tends to be highly correlated with New-
man’s random walk betweenness [3] described in Subsection 3.1 (based on a
random walk on G).

4.2. The bag-of-paths criticality: basic, standard, case (BPC)

We now derive a closed-form formula for computing these probabilities
when an intermediate node j is deleted from the graph. Then, our BoP crit-
icality measure for node j will be the relative entropy (or Kullback-Leibler
divergence) between the bag-of-paths probabilities – the relative accessibility
(see Equation (16)) – before and after removing node j from G. It there-
fore quantifies to which extend the relative accessibility is affected by the
deletion of node j.

The intuition is the following. The bag-of-paths criticality measures the
global impact of a node deletion on the total relative accessibility of the
nodes in the network

• by computing this accessibility before and after node deletion,

• and then by computing their difference by means of the Kullback-
Leibler divergence.

• This difference computes the loss in accessibility when deleting each
node in turn.

Thus, in this work, a critical node is defined as a node whose deletion greatly
affects the relative accessibility between the remaining nodes. This criticality
measure will be referred as BPC. We now detail its derivation.
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4.2.1. Reducing the support of the bag-of-paths probability distribution

First, let us introduce some new notation. In Equation (16), zik will be
denoted as zik(A) and Z as Z(A) since they are based on adjacency matrix
A. Then, as our criticality measure relies on the deletion of a node (say,
node j), we will need to reduce the support of the bag-of-paths probabil-
ity distribution to V \ j (the set of nodes of G, with node j removed) by
eliminating paths starting or ending in j.

To do this, we introduce Z(−j)(A), which is Z based on A (the original
graph), but where the jth column and the jth row of Z have been removed.

Then, z
(−j)
ik (A) with i 6= j and k 6= j is its i, k element. We further define

P
(−j)
ik (A) = P(−j)(s = i, e = k) with support V \ j based on the elements of

Z(−j)(A),

P
(−j)
ik (A) =

z
(−j)
ik (A)

n∑
i′,k′=1
i′,k′ 6=j

z
(−j)
i′k′ (A)

, with i, k 6= j (18)

which corresponds to the BoP probabilities (see Equation (16)) based on
the whole original graph (A), but where the support of the discrete proba-
bility distribution is reduced to the set of nodes different from j – we do not
consider node j as a potential source or destination node.

In practice, from this last equation, we observe that this can be done
by putting both row j and column j of Z to 0 and then summing over its
elements, as will be done in Algorithm 1 (line 7).

4.2.2. Computing Z after deleting node j from A

We now turn to the computation of the fundamental matrix of the graph
after deleting node j. In this context, it is important not to confuse Z(−j)(A)
(introduced in the previous subsection) with Z(A(−j)), which is defined as
matrix Z computed from Equation (16), but based this time on A(−j): the
adjacency matrix A whose jth row and column have been removed (node j
is deleted so that paths in the graph cannot visit this node any more). In
other words, A(−j) is the adjacency matrix of G \ j. Thus the zik(A(−j))
with i 6= j and k 6= j are the elements of Z(A(−j)). Notice that Z(−j)(A)
and Z(A(−j)) have the same size; both are (n− 1)× (n− 1) square matrices
(node j is dismissed in both cases).

Then, from Equation (16), we define the bag-of-paths probabilities P(s =
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i, e = k|s, e 6= j) based on A(−j) as

Pik(A(−j)) =
zik(A(−j))

n∑
i′,k′=1
i′,k′ 6=j

zi′k′(A
(−j))

, with i, k 6= j (19)

corresponding to the graph G with node j removed.

4.2.3. The bag-of-paths criticality

Finally, the bag-of-paths criticality (BPC) is the Kullback-Leibler di-
vergence between the bag-of-paths probabilities, quantifying relative acces-
sibilities, before and after node removal,

crj =
n∑

i,k=1
i,k 6=j

P
(−j)
ik (A) log

(
P
(−j)
ik (A)

Pik(A(−j))

)
(20)

and the larger this divergence, the larger the impact of the deletion of node
j on the overall accessibility.

Note that computing the bag-of-paths criticality for all the n nodes has
a time complexity of about O(n3 + n(n − 1)3). The first term corresponds
to the evaluation of P(−j)(A) (which requires a matrix inversion) and the
second term to n evaluations of P(A(−j)) (inversion of n matrices, after
deleting each node). This leads to an overall O(n4) time complexity. We
now turn to a fast approximation of this quantity.

4.3. The bag-of-paths criticality: a fast approximation (BPCf)

In this subsection, we will modify the bag-of-paths criticality to ob-
tain a O(n3) time complexity instead of O(n4). It relies on the efficient
approximation of the entries of Z(−j) in terms of the fundamental matrix
Z = (I−W)−1. This version will be referred as BPCf.

4.3.1. The fast, approximate, bag-of-paths criticality

Let us first define

• zcj = colj(Z) = Zej and zrj = rowj(Z) = eTj Z

• wc
j = colj(W) = Wej and wr

j = rowj(W) = eTj W
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where colj and rowj are respectively the jth column (a column vector) and
the jth row (a row vector) of the matrix.

The main idea behind the approximation is to set row j of matrix W to
zero2 (providing W(−j)), instead of deleting row and column j of adjacency
matrix A, as required by the exact bag-of-paths criticality (see Equation
(20)). Indeed, this approximation appears to be much simpler that the
original problem and reduces the set of paths to paths avoiding j (as if
node j was deleted), as shown below. Then, the bag-of-paths criticality is
approximated by the Kullback-Leibler divergence between the bag-of-paths
probabilities, as before,

crfj =
n∑

i,k=1
i,k 6=j

P
(−j)
ik (A) log

(
P
(−j)
ik (A)

Pik(W(−j))

)
(21)

using this time W(−j) for computing the fundamental matrix and the bag-
of-paths probabilities (instead of A(−j) in Equation (20)). However, this
only results in an approximation of the exact solution, as discussed later in
Subsection 4.3.4. We now detail how to approximate efficiently the bag-of-
paths probabilities from the matrix W(−j).

4.3.2. Computing Z after setting row j of W to zero

Indeed, turning node j into a killing, absorbing, node (no outgoing link
from this node) can be achieved by defining a new matrix W(−j) = W−ejw

r
j

as W is the elementwise (Hadamard) product between Pref and C (see
Equation (17)). Doing so, row j of W is set to zero, meaning that node j
cannot be an intermediate node anymore, as if node j was deleted. Thus
paths connecting i and k (with i, k 6= j) cannot visit j any more: this node
is excluded from the paths. Moreover, this actually corresponds to a simple
rank-one matrix update.

By exploiting this property, it will now be shown that we obtain an
extremely simple formula for the update of the fundamental matrix:

Z(W(−j)) = (I−W(−j))−1 = Z−
zcjz

r
j

zjj
(22)

2Note that we obtain the same result if we set both row j and column j of W to zero
– this way of doing is equivalent to deleting row and column j of W and computing the
fundamental matrix and the bag-of-paths probabilities from this reduced matrix. However,
setting only row j to zero is simpler and provides the same results.
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where only the entries i, k 6= j of Z(W(−j)) are meaningful. Recall that zcj
is a column vector while zrj is a row vector. The rest of the subsection is
dedicated to the derivation of this result and can be skipped at first reading.

Indeed, this results from a simple application of the Sherman-Morrison
formula (see, e.g., [36, 37, 38]) for the inverse of a rank-one update of a
matrix: if c and d are column vectors,

(B + cdT)−1 = B−1 − B−1cdTB−1

1 + dTB−1c
(23)

Now, from W(−j) = W−ejw
r
j , we have (I−W(−j)) = (I−W) + ejw

r
j . By

setting B−1 = Z, B = (I−W), c = ej and d = (wr
j)

T in Equation (23), we
obtain for (22)

Z(W(−j)) = (I−W(−j))−1 = Z−
Zejw

r
jZ

1 + wr
jZej

(24)

Let us first compute the term wr
jZ appearing both in the numerator and

the denominator of the previous equation. Since Z = (I−W)−1, (I−W)Z =
I, and thus

wr
jZ = ((wr

j)
T − ej + ej)

TZ

= −(ej − (wr
j)

T)TZ + eTj Z

= −eTj + zrj = zrj − eTj (25)

From Equation (25), the denominator of the second term in the right-
hand side of Equation (24) becomes

1 + wr
jZej = 1 +

(
zrj − eTj

)
ej = zrjej = zjj (26)

Moreover, also from (25), the numerator of the second term in the right-
hand side of Equation (24) is

Zejw
r
jZ = zcj

(
zrj − eTj

)
(27)

We substitute the results (26) and (27) in the denominator and the
numerator of Equation (24), providing

Z(W(−j)) = Z−
zcj

(
zrj − eTj

)
zjj

(28)
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However, row and column j should neither be taken into account, nor
used, and can therefore be put to zero. Indeed, since the last term of the
numerator in Equation (28), zcje

T
j , only updates the jth column, it can safely

be ignored (this column j is useless and will never be used, as it corresponds
to the deleted node), resulting in redefining the quantity as

Z(W(−j)) = (I−W(−j))−1 = Z−
zcjz

r
j

zjj

and now the jth row as well as the jth column of Z(W(−j)) are equal to zero.
Indeed, elementwise, this last equation reads zik(W(−j)) = zik − zijzjk/zjj ,
which is equal to zero both when i = j and k = j. We therefore obtain
exactly Equation (22). Thus, the fundamental matrix Z needs to be inverted
only once and the elements zik(A(−j)) in Equation (19) are approximated
by zik(W(−j)) for computing the approximate bag-of-paths probabilities.

The resulting matrix has a jth row as well as a jth column equal to zero
and it can be shown that each element zik(W(−j)) of Z(W(−j)) corresponds
to

zik(W(−j)) =
∑

℘∈P(−j)
ik

π̃ref(℘) exp [−θc(℘)] (29)

where P(−j)
ik is the set of paths avoiding node j.

4.3.3. The approximate bag-of-paths probabilities

The approximate bag-of-paths probabilities are computed from W(−j)

in the same way as for the standard bag-of-paths (see Equation (19)),

Pik(W(−j)) =
zik(W(−j))

n∑
i′,k′=1
i′,k′ 6=j

zi′k′(W
(−j))

, with i, k 6= j (30)

where the elements of the fundamental matrix are computed from Equation
(22) this time.

Finally, the fast approximation of the criticality measure is computed
from these approximate bag-of-paths probabilities through Equation (21).

The algorithm is detailed in Algorithm 1, where the probabilities P
(−j)
ik (A)

and Pik(W(−j)) are respectively gathered in matrices Π and Π(−j).

18



4.3.4. Discussion of the approximation

It should be noted that this procedure only computes an approxima-
tion of the BoP probabilities Pik(A(−j)) (defined in Equation (19)) when
removing an intermediate node j. Indeed, for computing the exact proba-
bilities on the graph G \ j, the natural random walk transition probabilities
(the reference probability matrix Pref) should also be updated, as the edges
entering node j cannot be followed any more. In our approximate proce-
dure, these reference probabilities are not updated when computing W(−j)

(see Equation (17)), causing some (usually small) disturbance in comparison
with explicitly deleting the node j and recomputing the quantities (including
transition probabilities) from this new graph G \ j. Relative performances
of the exact BoP criticality and the approximated BPCf criticality will be
investigated in the experiments.

Note that the expression could be adapted to exactly reflect node dele-
tion, but the update formula becomes much more complex and we did not
observe any significant difference between the two approaches in our exper-
iments (see the experimental section).

One way to render the procedure exact would be to instead minimize
expected cost subject to a fixed entropy constraint (as in [35]), instead of
the Kullback-Leibler divergence in Equation (13). This results in redefining
the W matrix as

W = exp[−θC] (31)

instead of (17). This solves the problem of the Pref update since this tran-
sition matrix does not appear any more in the computation of W and Z.
However, experiments showed that this choice performs slightly worse (there-
fore not reported in the paper) than the approximate update introduced in
this section.

An elementary study of the empirical time complexity of the two versions
BPC and BPCf is reported in Figure 1. Recall that the overall complex-
ity for BPC is O(n4) and O(n3) for BPCf. For a 3000-nodes graph, the
saving factor is greater than 10. Notice that no sparse, approximate, or
optimized, implementation were used in the study. The CPU is a simple In-
tel(R) Core(TM) i5-4310 at 2.00 GHz with 8 Go RAM and the programming
language is Matlab.

4.4. Illustrative example

A small toy graph, depicted on Figure 2, is now used as an illustrative
example. This graph has six nodes: the (rounded) BPC value for each node
is 6.3, 8.5, 5.5, 6.2, 7.1, 6.3, respectively. It corresponds to the node ranking
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Algorithm 1 Computing the approximate bag-of-paths criticality of the nodes
of a graph.

Input:
– A weighted undirected graph G containing n nodes.
– The n× n adjacency matrix A associated to G, containing affinities.
– The n× n cost matrix C associated to G.
– The inverse temperature parameter θ.

Output:
– The n×1 approximate bag-of-paths criticality vector cr containing the change
in the probability distribution of picking a path starting in node i and ending
in node k, when each node j is deleted in turn.

1. D ← Diag(Ae) {the row-normalization matrix; e is a column vector full of
1s}

2. Pref ← D−1A {the reference transition probability matrix}
3. W← Pref ◦ exp [−θC] {elementwise exponential and multiplication ◦}
4. Z← (I−W)−1 {the fundamental matrix}
5. for j = 1 to n do {compute criticality for each node j in turn}
6. zrj ← eT

j Z and zcj ← Zej {copy row j and column j of Z}
7. Z′ ← Z − ejz

r
j − zcje

T
j + zjjeje

T
j {set row j and column j of Z to 0 for

disregarding paths starting and ending in j, but keeping those passing
through j. Note that the last term is introduced because the diagonal
element zjj is subtracted twice.}

8. Π ← Z′

eTZ′e
{normalize in order to obtain the bag-of-paths probability

matrix whose support is now V \ j}

9. Z(−j) ← Z−
zcjz

r
j

zjj
{update of matrix Z when removing row j from W}

10. Π(−j) ← Z(−j)

eTZ(−j)e
{normalize in order to obtain the corresponding bag-

of-paths probabilities after deletion of row j of W}
11. Remove both row j and column j from Π and Π(−j)

12. π ← vec(Π) and π(−j) ← vec(Π(−j)) {stack probabilities into column
vectors by using the vec operator}

13. crj ← (π(−j))T log(π(−j)÷π) {compute Kullback-Leibler divergence with
÷ being the elementwise division. It is assumed that 0 log 0 = 0 and
0 log(0/0) = 0}

14. end for
15. return cr

2, 5, 6, 1, 4, 3 (where the largest score defines the most critical node), which
seems legit. Conversely, the WIE criticality succeeds to identify node 2 as
the most critical, but the second node in the ranking is node 3, which looks
counter-intuitive.
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Figure 1: Empirical complexity analysis: computation time (in seconds) in function of
network size (number of nodes). The overall complexity for BPC (upper curve) is O(n4)
(a matrix inversion per node) and O(n3) for BPCf (lower curve, only one matrix inversion
plus fast updates). We observe that BPCf scales better than BPC; for instance, for a
3000-nodes graph, the saving factor is larger than 10.

5. Experimental Comparisons

In this section, the bag-of-paths criticalities (both the exact one (BPC)
and the fast approximate one (BPCf)) and the other centrality measures
introduced in Section 3 are compared (see Table 1 for a reminder) on the
two types of graphs described in subsection 5.1. To do so, we followed a
common methodology [17, 18, 39, 40, 41] described in subsection 5.2 and we
report first a simple correlation analysis between rankings in subsection 5.3.
Then, results are compared and discussed in subsection 5.4.

5.1. Datasets

We used two well-known graph generators [42, 43] to build a set of 200
graphs: 100 are generated using Erdős-Rényi’s model and an additional 100
using Albert-Barabási’s model. Each of these models has different variants;
the one we used is described below. The number of nodes is set randomly
for each graph between 5 and 500.

• Erdős-Rényi (ER) Graph Generator [43]. This model is also
called the Poisson random graph generator because it generates a ran-
dom graph with a Poisson node degree distribution. This type of graph
is often used to study theoretical properties and behavior of networks
[44]. A parameter p ∈ ]0, 1] is required. The model first generates an
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Figure 2: A small toy graph. The (rounded) BPC value for each node is 6.3, 8.5, 5.5, 6.2,
7.1, 6.3, respectively. It corresponds to node ranking 2, 5, 6, 1, 4, 3.

upper triangular random matrix (zeros on diagonal), then, for each
entry of the matrix, it puts a 0 if the entry is smaller than p, and
1 otherwise. Then the matrix is symmetrized using A + AT. For
our experiments, p was set to a random value for each graph, with
p ∈ ]0, 1/2].

• Albert-Barabási (AB) Graph Generator [42]. The model gener-
ates a random graph with a power law degree distribution. This kind
of network is often observed in natural and human-generated systems,
including the world wide web, citation networks, and social networks
[44]. An integer parameter m is required. The model begins with an
initial connected network of m+ 1 nodes. Then, new nodes are added
to the network, one at a time. Each new node is connected to m exist-
ing nodes with a probability that is proportional to the current degree
of each node. The procedure stops when the desired number of nodes
is reached. Heavily linked nodes (“hubs”) tend to quickly accumulate
even more links: the new nodes have a “preference” to attach them-
selves to these already heavily linked nodes. For our experiments, p
was set to a random value for each graph with m ∈ {1, 2, 3, 4, 5, 6}.
Many “natural” networks in real life behave like AB graphs (see for
example [17] and citations inside).

22



Table 1: List of all measures compared in this study, together with their type, acronym and
parameter. If a measure depends on a parameter, tested values as well as the most frequent
value (mode) are reported. Notice that Shortest Path and Random Walk Betweenness al-
gorithms are fast, optimized, versions. The other algorithms were implemented in Matlab,
as described in Section 3. Further notice that the Matlab implementation of the matrix
exponential is very efficient (it is used for computing Estrada’s node betweenness).

Name Type Acronym Description Param. Tested values Mode Time

Baseline (random disconnection) - BL Subsection 5.2 none - - < 10−3s

Edge Connectivity Node Betw. EC See Eq. 3 none - - < 10−3s
Shortest Path Betweenness Node Betw. SPB See Eq. 4 none - - 0.8s
Random Walk Betweenness Node Betw. RWB Subsection 3.1 none - - 1s
Estrada Index Node Betw. EST See Eq. 5 none - - 0.6s
Wehmuth’s K Node Crit. WK See Eq. 6 h [1,2,3,4,5,6] 1 (28%) 342s
Klein Index Node Crit. KLE See Eq. 7 none - - 1634s
Wiener Index Graph Crit. WIE See Eq. 9 none - - 375s
Kirchhoff Index Graph Crit. KIR See Eq. 10 none - - 884s
Kemeny Index Graph Crit. KEM See Eq. 11 none - - 1000s
Shield Value Graph Crit. SHV See Eq. 12 none - - 182s

Bag-of-Paths criticality (fast) Node Crit. BPCf See Eq. 20 θ 10[−6,−3,−2,−1,0,1] 10 (44%) 42s

Bag-of-Paths criticality (standard) Node Crit. BPC See Eq. 22 θ 10[−6,−3,−2,−1,0,1] 1 (39%) 205s

5.2. Disconnection strategies

To study the performances of the different centrality/criticality mea-
sures, we simulate the effect of network attacks consisting in deleting its
nodes sequentially in the order provided by the measure – the most critical
nodes being deleted first. This is a natural way of assessing node criticality
[17, 18]. We then record, for each network and each measure, the results of
this sequential node deletion by measuring its gradual impact on network
connectivity. A good criticality measure hurts most the network by, e.g.,
disconnecting it in several connected components, each preferably having
an equal size – a balanced partition.

In practice, we first compute a criticality ranking of all nodes according
to each different centrality/criticality measure introduced in the previous
section. This ranking can be achieved in two different way: (1) it is com-
puted once for all from the whole graph G (one single ranking), or (2) it
is re-computed after each node deletion. With this last option, the cen-
trality/criticality measures must be re-computed n− 1 times which is time-
consuming. We therefore decided to update the ranking only 100 times in
total (except, obviously, for graphs with n < 100 nodes). This last option
will be referred to as 100-ranking.

Recall that, to evaluate the criticality of a node j with respect to a global
graph criticality measure, the difference between the graph criticality of G\j
and the global graph G criticality is computed (see Equation (8)).

Once those node rankings have been computed for each measure, the
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Table 2: Results obtained with the disconnection strategies described in Subsection 5.2.
The Friedman/Nemenyi ranking over 100 graphs (AB and ER), according to two discon-
nection strategies (single ranking and 100-ranking), is presented, together with the mean
± standard deviation of the obtained relative biggest connected component area under
the curve (AUC). Concerning the ranking, the critical difference is equal to 1.82, meaning
that a measure is significantly better than another if their rank difference is larger than
this amount. For the ranking, the larger is the better whereas, for AUC, smaller is better.
In each column, the methods in bold are the best ones or are not significantly different
from the overall best one.

100 AB graphs: single ranking 100 ER graphs: single ranking 100 AB graphs: 100-ranking 100 ER graphs: 100-ranking
measure ranking AUC measure ranking AUC measure ranking AUC measure ranking AUC
BPC 11.750 0.3092 ±0.163 BPC 12.355 0.8634 ±0.180 BPCf 11.640 0.3174 ±0.155 BPC 12.555 0.7936 ±0.161
BPCf 11.285 0.3103 ±0.164 BPCf 10.250 0.8773 ±0.182 BPC 11.370 0.3185 ±0.156 BPCf 11.270 0.8063 ±0.163
RWB 10.425 0.3158 ±0.167 SPB 9.590 0.8851 ±0.167 WK 10.375 0.3249 ±0.159 RWB 9.095 0.8186 ±0.160
KIR 9.435 0.4550 ±0.255 RWB 9.365 0.8827 ±0.175 EC 8.645 0.3392 ±0.162 KIR 8.630 0.8405 ±0.138
WK 8.805 0.3246 ±0.175 KIR 8.575 0.8954 ±0.150 RWB 8.475 0.3427 ±0.162 WK 8.275 0.8215 ±0.163
SPB 8.205 0.3283 ±0.172 WK 7.550 0.8937 ±0.168 EST 8.090 0.3423 ±0.167 SPB 7.955 0.8258 ±0.156
EC 7.815 0.3276 ±0.176 EC 7.290 0.8959 ±0.165 SPB 7.510 0.3523 ±0.164 EC 7.730 0.8272 ±0.159
KLE 6.940 0.3577 ±0.208 WIE 6.610 0.9112 ±0.131 KLE 5.945 0.3740 ±0.182 KEM 6.280 0.8467 ±0.143
WIE 4.385 0.5188 ±0.242 KEM 5.665 0.9092 ±0.145 KIR 5.290 0.5232 ±0.238 WIE 5.530 0.8719 ±0.112
KEM 4.260 0.5226 ±0.246 EST 4.230 0.9113 ±0.156 KEM 5.230 0.5172 ±0.228 EST 5.410 0.8396 ±0.156
EST 3.620 0.4666 ±0.224 SHV 3.780 0.9207 ±0.129 SHV 4.005 0.4179 ±0.169 SHV 3.730 0.8640 ±0.134
SHV 2.585 0.5035 ±0.185 BL 3.015 0.9366 ±0.104 WIE 2.635 0.5995 ±0.232 KLE 2.790 0.8771 ±0.150
BL 1.490 0.7078 ±0.193 KLE 2.725 0.9273 ±0.134 BL 1.795 0.6380 ±0.194 BL 1.910 0.8986 ±0.120

simulated attacks can start. Nodes are deleted in decreasing order of crit-
icality. After each node deletion, the Biggest Connected Component size
(BCC), i.e., the number of nodes contained in the largest connected com-
ponent, is recorded [17, 18]. The smaller this value, the more effective the
attack and thus the more effective the criticality index (see Figure 3 for an
example). This performance measure quantifies to which extend the network
is decomposed in several balanced parts (no “giant” component is left). If,
for example, the node deletion strategy (the criticality ranking) is very inef-
ficient, and it never disconnects the network, the BCC only decreases by one
unit at a time. On the contrary, if it cuts the network into two equally sized
parts, the BCC is divided by two, which corresponds to a large decrease.

By further normalizing with respect to the size of the graph, that is,
dividing BCC by the current number of nodes, we get the Relative Biggest
Connected Component size (RBCC) which will be the performance indicator
used in the experiments. It is then possible to draw a plot of RBCC versus
the number of deleted nodes (1, 2, 3, . . . , n) [17, 18]. Then, to summarize
those plots, we sum up the Area Under the Curve (AUC). The smaller this
AUC, the better the method since the deletion of the most critical nodes
(according to the ranking) quickly disconnects the network into balanced
components, leading to smaller RBCC (see the illustrative example in Figure
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Table 3: Another perspective on the results obtained with the disconnection strategies
described in Subsection 5.2. The Friedman/Nemenyi ranking over 100 graphs (AB or
ER) is presented, together with the mean ± standard deviation of the RBBC area under
the curve (AUC). Here, both strategies (single ranking and 100-ranking) are analyzed
together. Concerning the ranking, the critical difference is equal to 3.97, meaning that
a measure is significantly better than another if their rank difference is larger than this
amount. For the ranking, the larger is the better while for AUC, the smaller is the better.
In each column, the methods in bold are the best ones or are not significantly different
from the overall best one.

100 AB graphs 100 ER graphs
measure ranking AUC measure ranking AUC
1-BPC 23.185 0.30923 ±0.16319 100-BPC 25.190 0.79360 ±0.16064
1-BPCf 22.575 0.31030 ±0.16351 100-BPCf 23.955 0.80633 ±0.16343
1-RWB 21.045 0.31579 ±0.16704 100-RWB 21.660 0.81857 ±0.15963
100-BPCf 20.355 0.31740 ±0.15509 100-WK 20.880 0.82151 ±0.16311
100-BPC 20.075 0.31847 ±0.15584 100-KIR 20.440 0.84045 ±0.13762
1-WK 18.875 0.32461 ±0.17465 100-SPB 20.250 0.82587 ±0.15663
1-KIR 18.565 0.45500 ±0.25486 100-EC 20.200 0.82723 ±0.15883
100-WK 18.235 0.32488 ±0.15874 100-KEM 18.275 0.84668 ±0.14274
1-SPB 17.665 0.32831 ±0.17209 100-EST 17.790 0.83957 ±0.15614
1-EC 17.585 0.32764 ±0.17627 100-WIE 16.420 0.87185 ±0.11230
100-EC 15.525 0.33924 ±0.16238 100-SHV 15.375 0.86398 ±0.13363
100-RWB 15.120 0.34273 ±0.16239 1-BPC 14.855 0.86344 ±0.18018
100-EST 14.890 0.34227 ±0.16667 100-KLE 13.595 0.87705 ±0.15034
1-KLE 14.780 0.35771 ±0.20768 1-BPCf 12.160 0.87733 ±0.18177
100-SPB 13.395 0.35227 ±0.16436 100-BL 11.245 0.89857 ±0.11965
100-KLE 10.675 0.37401 ±0.18217 1-SPB 11.120 0.88511 ±0.16666
100-KIR 10.085 0.52323 ±0.23805 1-RWB 11.005 0.88265 ±0.17446
100-KEM 10.065 0.51721 ±0.22753 1-KIR 9.655 0.89537 ±0.15000
1-WIE 8.685 0.51884 ±0.24191 1-WK 8.900 0.89371 ±0.16805
1-KEM 8.470 0.52258 ±0.24621 1-EC 8.470 0.89593 ±0.16539
100-SHV 7.905 0.41789 ±0.16913 1-WIE 7.290 0.91115 ±0.13097
1-EST 7.300 0.46664 ±0.22439 1-KEM 6.405 0.90924 ±0.14499
100-WIE 5.600 0.59947 ±0.23205 1-EST 5.040 0.91128 ±0.15548
1-SHV 4.815 0.50353 ±0.18480 1-SHV 4.390 0.92066 ±0.12886
100-BL 3.190 0.63796 ±0.19396 1-BL 3.300 0.93658 ±0.10436
1-BL 2.340 0.70782 ±0.19250 1-KLE 3.135 0.92732 ±0.13371

3).
Finally, we report our results as follows: we perform a Friedman/Nemenyi

test [45] and, in addition, we also compute the mean and the standard devi-
ation of the AUC across all of the AB and ER generated graphs, providing
more detailed results. Results can be found on Table 2; the higher the
ranking, the better the criticality measure.

If a parameter is present, it is tuned as follows: for each graph, a range of
values is tested and the best one is chosen for the disconnection experiment
(the size of the graph can influence the parameter choice). This reflects the
case of a real attack (we assume that the attacker has access to the network
structure and can test the effect of the different parameters). Parameters
could be tuned again after each node deletion, but it would be too computa-
tionally intensive, so we did not investigate this approach. For information,
best values of parameters h and θ are reported on Table 4.
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Table 4: Number of times each value of the parameters is selected during the disconnec-
tion strategies described in Subsection 5.2. Note that only WK, BPCf and BPC need a
parameter tuning. Bold values show the maximum per task and per measure.

100 AB graphs: 100 ER graphs: 100 AB graphs: 100 ER graphs: sum over
measure parameter value single ranking single ranking 100-ranking 100-ranking the 4 tasks

WK

h = 1 28 15 52 14 111
h = 2 7 68 6 7 87
h = 3 27 15 8 23 70
h = 4 27 0 9 26 60
h = 5 8 2 13 16 40
h = 6 3 0 12 14 32

BPCf

θ = 10−6 6 24 29 10 61
θ = 0.001 6 0 9 3 18
θ = 0.01 6 1 12 5 24
θ = 0.1 8 2 19 14 44
θ = 1 18 6 22 29 76
θ = 10 56 67 9 39 177

BPC

θ = 10−6 16 21 8 15 60
θ = 0.001 6 1 4 4 14
θ = 0.01 17 3 2 1 23
θ = 0.1 24 8 17 18 66
θ = 1 12 52 49 45 156
θ = 10 25 15 20 17 81

For comparison, we also consider the case where nodes are simply re-
moved at random and independently (BL for baseline). It corresponds to
a random “failure” or “attack”, which has been studied theoretically in the
literature (see [17] for an example).

5.3. Preliminary exploration: correlation analysis

The different centrality/criticality measures were first compared by com-
puting two Kendall’s correlation tests between each ranking. This is re-
ported on Table 5 for both a small and a larger value of the parameters of
our centrality/criticality measures: θ (BPCf and BPC) and h (WK). The
small θ and h were set to 10−6 and 1, respectively, while the larger θ and h
were 10 and 6. To summarize and to make things more visual, dendrograms
were built above with a Ward hierarchical clustering (see, e.g., [46, 47, 48])
based on Kendall’s correlation matrices (Figure 4).

5.4. Results and discussion

Detailed results are presented in Table 2, and Table 1 lists the different
tested methods together with their acronym. Note that, when performing
the Friedman/Nemenyi test comparing the different rankings provided by
the methods, the critical difference is equal to 1.82, meaning that a measure
is considered as significantly better than another if its rank is larger than
this amount.
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Table 5: Mean Kendall’s correlation between the investigated measures over our 200
graphs. Above the main diagonal: results for the larger θ and h (10 and 6). Below the
main diagonal: results for the smaller θ and h (10−6 and 1).

EC SPB SHV WK BPCf WIE KIR KLE EST BL KEM RWB BPC
EC 1.0000 0.8784 0.7352 0.9745 0.8525 0.7088 0.7562 0.3452 0.7761 -0.0030 0.6848 0.8895 0.7637
SPB 0.8784 1.0000 0.6367 0.8555 0.8169 0.6666 0.7365 0.3987 0.6732 -0.0047 0.6420 0.8790 0.7652
SHV 0.7352 0.6367 1.0000 0.7523 0.5391 0.7678 0.5992 0.1036 0.9476 -0.0072 0.7074 0.6008 0.4898
WK 0.3392 0.3116 0.0958 1.0000 0.8153 0.7470 0.7929 0.3286 0.7850 -0.0033 0.7206 0.8766 0.7377
BPCf 0.9231 0.8579 0.6607 0.2959 1.0000 0.5761 0.7689 0.4441 0.5600 -0.0022 0.5345 0.8695 0.8863
WIE 0.7088 0.6666 0.7678 0.0744 0.6873 1.0000 0.7821 0.1380 0.7559 -0.0073 0.8380 0.6384 0.5694
KIR 0.7562 0.7365 0.5992 0.1620 0.8185 0.7821 1.0000 0.3303 0.5923 -0.0066 0.7345 0.8055 0.7585
KLE 0.3452 0.3987 0.1036 0.3325 0.3747 0.1380 0.3303 1.0000 0.1314 0.0060 0.1075 0.4055 0.4675
EST 0.7761 0.6732 0.9476 0.1340 0.6864 0.7559 0.5923 0.1314 1.0000 -0.0032 0.6956 0.6350 0.5030
BL 0.0058 0.0047 0.0037 0.0003 0.0058 -0.0016 -0.0000 0.0100 0.0033 1.0000 -0.0057 -0.0050 -0.0064
KEM 0.6848 0.6420 0.7074 0.0847 0.6671 0.8380 0.7345 0.1075 0.6956 -0.0005 1.0000 0.6292 0.5038
RWB 0.8895 0.8790 0.6008 0.2945 0.9093 0.6384 0.8055 0.4055 0.6350 0.0068 0.6292 1.0000 0.7959
BPC 0.7566 0.7575 0.4538 0.3078 0.7480 0.4820 0.6818 0.5083 0.4753 0.0097 0.4451 0.7872 1.0000
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Figure 3: Example of Biggest Connected Component size recorded when nodes are sequen-
tially removed by following two criticality rankings. The network is an Albert-Barabási
(AB) 60-nodes graph. The two criticality rankings are BPC (lower curve) and BL (ran-
dom baseline, upper curve) and are computed once before starting to remove nodes. The
BPC ranking is more efficient in detecting the critical nodes, as their removal quickly
disconnects the network in small pieces.

In this Table 2, we observe that, for three of the four considered tasks (for
both disconnection strategies, single ranking and 100-ranking, on Albert-
Barabási (AB) graphs and 100-ranking on Erdős-Rényi (ER) graphs but not
for single ranking on ER graphs), the Friedman/Nemenyi test [45] cannot
conclude that our proposed model (BPC) is better than its approximation
(BPCf), and vice versa. On the ER graphs, single ranking (column 2 of Table
2), the results obtained by BPC and BPCf are significantly different but still
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Figure 4: Ward dendrograms of studied criticality measures. Distances are based on
Kendall’s correlation of Table 5. The smaller the height (Y-axis) of joining branches,
the closer the measures. As BPCf, BPC and WK depend on a parameter, two cases are
considered: a larger value of the parameters and a smaller value. The small θ and h are
10−6 and 1, respectively, while the larger θ and h are 10 and 6.

close in comparison to the other criticalities. It means that the considered
approximation seems reasonable, at least on the studied datasets.

We further observe from the same experiments (Table 2) that BPC is
significantly better than all the other tested measures on ER graphs. On AB
graphs, it cannot be concluded that BPC is significantly better than RWB
in the case where only one ranking is performed (single ranking). This is
probably related to the fact that BPC is based on a random walk, as RWB
does. Moreover, if an updated ranking is used instead (100-ranking), then
BPC is not significantly better than WK – while still obtaining better per-
formances. We conclude that the introduced criticality measures (BPC and
BPCf) perform well in all contexts as they always perform better (and, most
of the time, significantly better) than the competing measures, at least on
the investigated data sets. However, this advantage is not always statisti-
cally significant when compared to RWB (single ranking on AB graphs) and
WK (100-ranking on AB graphs).

Besides this, when examining the results of the other criticality measures,
we often find the RWB, KIR, WK and SPB measures in the top-5 best
methods (Table 2). Note also that the EC (the degree) is quite efficient

28



combined with multiple ranking on AB graphs, given its simplicity. At the
bottom of the rankings, KLE, WIE, KEM, EST, and SHV often appear to
be even less effective than EC. Since EC is a really obvious measure that
can be easily computed, it would certainly be interesting to use EC instead
of other, more sophisticated, measures in many situations. In particular,
EC is quite efficient on AB graphs, if recomputed after each node deletion.
It can also be noted that KLE is not performing well on ER graphs (it
can even be worse than the random baseline BL, but its mean AUC is still
better). We unfortunately do not have a clear explanation of why this is the
case. All these conclusions are confirmed in Table 3 where the results of both
disconnection strategies (single ranking and ranking updated (100-ranking))
are pooled in order to have an idea of the best method, independently of
the ranking strategy.

It is also interesting to identify the most chosen θ and h parameter values
from Table 4. For h, it depends on to task to fulfill but the best h value is
usually small (1 to 4), and for θ it is better to take a value between 1 and
10. Notice that BPCf still exhibits the best mean rank when its parameter
is fixed (results not presented here; see the discussion at the end of this
section).

From Table 5, it is clear that WK’s correlation with the other measures
varies a lot depending of the h value. On the other hand, BPC’s and BPCf’s
correlation with the other measures are less dependent of θ. Note that it
was expected that those measures should be highly correlated with RWB
and EC when θ is small and with SPB when θ is large, as the bag-of-paths
betweenness does [26]. However, we observe that this is not the case for a
large θ: the criticality measures BPC and BPCf are still more correlated
with RWB when θ = 10. This suggests that the proposed measures capture
different properties than the bag-of-paths betweenness.

In Figure 4, we once more notice that the behaviour of WK is strongly
dependent of h. It turns out that with small h, its behavior is similar to
KLE. When h is larger, the neighborhood is more and more likely to be
close to the whole graph, therefore more and more correlated to EC. As
from Table 5, BPC’s and BPCf’s behavior are less sensitive to θ.

From visual inspection of Figure 4, we can identify different clusters of
measures:

• WIE, KEM, SHV and EST seem to form a cluster. This is a bit
surprising as these measures are based on different properties of the
graph, but still provide relatively similar results. Indeed, WIE is based
on shortest paths, KEM is based on random walks, SHV is based on
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an eigenvalue of A and EST on paths of different lengths.

• SPB, RWB, KIR, EC, BPCf, BPC are part of another cluster. The
same observation can be made: if RWB, BPCf and BPC are based on
random walks, SPB is based on shortest paths and KIR is based on
the spectrum of the Laplacian matrix. Notice that SPB, RWB, KIR,
BPCf and BPC tend to show good performances on Tables 2 and 3.

• KLE looks apart, but is correlated to WK when h is small.

• Finally, notice that the random baseline BL is the last merged measure
in the two cases, which looks natural.

Before closing the discussion, let us comment on the presence of parame-
ters. At first sight, it seems unfair to compare measures depending on a pa-
rameter (WH, BPC and BPCf) against measures free of parameter. Recall,
however, that the attacker can adapt its behavior to the network structure,
so that a parameter monitoring the smoothing scale can be considered as an
advantage. Moreover, let us recall two facts about the parameter θ of BPC
and BPCf. First, measures are not very sensitive to the parameter and,
second, its optimal value (according to our experiments) is often close to 1
or 10. Therefore, it seems that we could also just fix this parameter. By the
way, we reproduced the experiments by setting θ = 1 and it turns out that
BPC was still the best measure for three disconnection strategies while the
BPCf was the best for the last one (experiments not reported here).

Finally, to summarize the results, methods can be sorted (the first been
the best one) using Borda score ranking [49] based on our empirical results,
providing a ranking from best to worse:

• If node ranking is updated after each node deletion, independently of
the graph type: BPC, BPCf, RWB, WF, EC, SPB/KIR, EST, KEM,
KLE, WIE, SHV.

• If node ranking is not updated after each node deletion, independently
of the graph type: BPC, BPCf, RWB, KIR, SPB, WK, EC, KLE,
KEM, WIE EST, SHV.

• Finally, independently of the graph type and update factor, the best
methods are: BPC, BPCf, RWB, KIR, SPB, WK, EC, KLE, KEM,
WIE EST, SHV.

These results are in accordance with the rest of this Section.
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6. Conclusion

This paper investigated centrality/criticality measures on graphs through
a node disconnection analysis and introduced a new criticality measure based
on a bag-of-paths framework and its variant: the bag-of-paths criticality and
its fast, approximate, version.

Comparisons based on node disconnection simulations performed on a
large number of generated graphs show that those two bag-of-paths critical-
ity measures outperform the other considered centrality/criticality measures.
Friedman/Nemenyi tests confirm this fact statistically in most of the cases.

Of course the node disconnection analysis is only a proxy to determine
if our criticalities are able to identify “critical” nodes. Our future work
will mainly focus on testing the proposed measures on other tasks and to
consider other strategies, such as disconnecting groups of nodes instead of
one single node at each time.

Finally, a simple correlation analysis of those measure allowed to identify
coherent groups, namely the WIE, KEM, SHV and EST versus the SPB,
RWB, KIR, EC, BPCf and BPC (see Table 1 for acronyms). It was also
shown that the choice of the θ parameter does not impact much the behavior
of our two proposed criticality measures.

This study has also some limitations. It would, for instance, be useful
to confirm the results on larger, real-world, networks – not only artificial
graphs. Moreover, other criticality, vulnerability, and betweenness measures
not considered here should be investigated as well [1, 8].
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